ultithreaded

-

Scanned with CamScanner

p‘ “”m 7. T. Cnmplge/n gr»efﬂﬁdﬁfw

%- 2 1t-in support for
nlike most other computer lm‘lguag.;es,_LﬂVﬂ provides bui:t;?nss 5};’0 = ofe
multithreaded programming. A“‘m}'!-“—]—u—lﬂ—a ged Program cc am is called a thregd,
Parfs Phat can run concurrently. Bach part of such a progrl. hreadihg is

%‘mﬁ defines a separate path of execution, Thus, multithreading is :

and eacC

specialized form of mullilaskin&‘g : =,
_ ; inted with multitasking, because it is supported

You are almost certainly acqu is
i : nct types
by virtually all modern operating systems, | lowever, there are two distinct typ

of multitasking: process-based and thread-based. It is important to undersl_%and the
difference between the two. For most readers, process-based multitasking is the more
familiar form. A process is, in essence, a program that is executing. Thus, process-based "
multitasking is the feature that allows your computer to run two or more programs
concurrently. For example, process-based multitasking enables you to run the Java

compiler at the same time that you are using a text editor, In process-based multitasking,
a program is st unit of code that can be dispatched by the schedulery

In a thread-based multita sking environment. the thread is the smallest unitof
dispatchable codey This means that a single program can perform two or more tasks
simultaneously. For instance, a text editor can format text at the same time that it is
— . &
printing, asTong as these two actions are being performed by two separate threads,
Thus, process-based multitasking deals with the “big picture,” and thread-based

multitasking handles the details,
@ultitasking threads require less overhead than multitasking processes. Processes

are heavyweight that require their own separate addxess-spg_g.g.llgtérprocess
C unication is expensive and limited—%witching from one process to
hey

W Amreads, on the other hand, are lightweight. T share the same
address space an poperatively share the same hgavyweight process. Interthread

from one thread to the Rext is

process-based multitasking is not ynder t ntr

multitasking is. ™ l'T
Multithreading enables you to write very efficient programs that make maximum

= of the CPU, because idle time can be kept to a minimun This is especially
important for the mterﬁﬁ@.&’-’@.@ﬁ[{‘ea cnvironment in which Java Operates, because

idle time is common. For example, the Trame e w v LAMCH JAvA G

» [l

ple, thﬁf?m‘,ﬁission rate of data over 3 network is
much slower than the rate at which the computer can process it. Even local file system -
resources are read and written at a much slower pace than they can be processed by the
CPU. And, of course, user input is much slower than the computer. Iny traditional,
single-threaded environment, your program has to wait for each of these tasks to finish

before it can proceed to the next one—even though the CPU is sitting idle most of the
time. Multithreading lets you gain access to this idle time and putit to good use.
tems such as Windows 98 or Windows 2000,

If you have programmed for operating sys
then you are already familiar with multithreaded programming. However, the fact that
Java manages threads makes multithreading especially convenient, because many of

‘the details are handled for you. |

Scanned with CamScanner

= PP - i

j’fhe Java Thread Model

The Java run-time system depends on threads for many things, and all the class libraries

T:rc designed with multithreading in mind. In fact, Java uses threads to enable the
entire environment to be asynchronou

s.Lhis helps reduce inefficiency by preventing
o waste of CPLU-ycles.y =

p——

The value of a multithreaded environment is best understood in contrast to its
counterpart. Single-threaded systems use an approach called an cvent loop with polling.
In this model, a single thread of control runs in an infinite loop, polling a single event

¢ M@@UQA&H&M- Once this pblling sav.a

_ mechanism returns with, say, a
signal that a network file is ready to be read, then the event loop dispatches control

to the appropriate event handler. Until this event handler returns, nothing else can
happen in the system. This wastes CPU time. It can also result in one part of a program
dominating the system.and preventing any other events from being processed. _f_ﬁ__”
general, 1n a singled-threaded environment, when a thread blocks (that is, suspends

execution) because it 1s waiting for some resource, the entire program stops running. /
The benefit of Java’s multithreading is that the main loop/polling mechanism is
"‘éxample, the 1dle time created when a thread reads data from a network or waits for

; l user input can be utilized elsewhere. Multithreading allows animation loops to sleep
for a second between each frame without causing the whole system to pause. When a
- thregd blocks in a Java program, only the single thread that is blocked pauses. All other
s continue to run. _
Threads exist in several states. A thread can be running. It can be ready torunas_..-
n as it gets CPU _time. A running thread can be suspended, which temporarily 2

— v, .
pendSTEs activity. A suspended thread can then be resumed, allowing it to pick up ¢
Where T Teft off

. A thre blocked-when waiting for a resource. At any time, a ~ ,
fhreaggﬁ be terminated, which halfs’its execution it_nmediately. Once terminated, a

ead cannot be resumed.

Thread Priorities L

‘Java assi

to each thread a priori eferr \ . ;
E%ﬁg{with respect to the others, 101 ties arg_l_l:ltege:rs .tha.t spec:]fy‘ the relative
ority of one thread to another. As an absolute value, a prlc.)rll'.y is meampg_lgss; a
BT = gad doesn't run any faster thax-m a lower—prlqmty thread if itis the
only thread running. Instead, a thread’s priority is used to decide when to switch from

i ch. S that determine
2Ne running thread to the “MWM“M

Ware simples

e A is i icitly yielding,
WA rily relinquish control. This is done by explicitly
Slezﬂf’ad i Efgénkii én pending I /0. In this scenario, all othe_r th_readi ;: '2: =
exarlrj&?l%’do;nd the hgighest—PfioritY thread that is ready to run is given _

Scanned with CamScanner

Java™ 2: The Complete Reference

:
thread that does not yield the processor is si.mply prccmptcdwl:}()l'fll;?-ttili";:ihat _ 11
it is doing—Dby a higher-priority thread. Basically, as soon as a higher-p ty %
}
i
.
3
|

thread wants to run, it does. This is called preemptive multitasking. o

Gircases where two threads with the same }’1‘10?}_[}21%9_@2‘,@!38 f Oi;gj fhre-:.lt:'lefgtfhe ;
«itafion s a il complicated, For operating sysfems such.aa JWINCOWS S26 - %o
TS ATE wutomatically i d-robin fashion. For other types of

equal priority are_time-sliced automatically in roun n fas /
’ operati'lg systems, threads of equal priority must voluntarily yield control to their peers.

p——_]

If they don't, the other threa ds will not run|

Problems can arise from the differences in the way that operating systems context-switch
threads of equal priority.

hronization

cause multj ine introduces an asynchronous behavior to your programs, there
must be for you to enforce synchronicity when you need it. For example, if you
o licated data structure, suchasa ~

W hreads to communicate and share a comp
linked list, you need some way to ensure that they don’t conflict with each other. That

15, vou miust prevent one thread from writing data while another thread is in the !

I i

" middl ding it. For this purpose, Java implements an elegant twist on an agesold
model of interproce = svnchronization: the mmoiitor. The monitor is a control echanism
first defined by C.A.R. Hoare. Yot can thin a monitor as a very s at can

old only one thréad. Once a thréad enters a imonitor, all other threads must wait until
t thread exits the mortitor. In this way, a can Be-used to protect a shared

- hat zead exis the mortor.Tn this way, ZTONUOT can Be v5e€ 0 PROIGT 2 S0
— Most multithreaded systems expose monitors as objects that our program must
WM‘M class

“Monitor”; instead, each objec own implicit m atis auto entered
wwwiimﬂed. Once a thread is inside a
synchronized method, no other thread can call any other synchronized method on
the same object. This enables you to write very clear and concise multithreaded code,
because synchronization support is built in to the language.

Messaging

After you diVi‘c_ie. your program into sepélrate threads, you reed to define how they will
communicate with each other. @Eamming with most other languages o :

must de on the operating sysfem toestablish communication between threads
This, of (:n:;lursi,i adds overhead. By contrast, Java provides a clean, low-cost wav for tv.vo
or more thréads to talk to each other, vi : et -

S Fa er, via calls to predefined methods that all objects

Scanned with CamScanner

Chapter 11: Multithreaded Programmin'g ;

pave. Javys.messaging system allows a thread to enter a synchronized method on an
obWMe until some other lhrmmmtmqtiﬁe‘é—if'fff"mme*(mt.'_— —

he Thread Class and the Runnable Interface

ava’'s multithreading system is built upon the Thread class, its methods, and its
Mﬁfﬁf{rhge, Runnable. Thread encapsulates a thread of execufion. since
you can't directly tofer to the ethereal state of a running thread, you will deal wi th it
througli'its proxy, the Thread instance that spawned it. To create a new thread, your
rogram will either extend Thread or implement the Runnable interface.

prog .
The Thread class defines several methods that help manage threads. The ones
____-—.—-—_f-—-—

wﬂ-h-’—uﬁd in this chapter are shown here: 4

T

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.

start Start a thread by calling its run method.
(f(:;--‘f’.__r!f'.'j . &

a single thread of execution. The

"J P " sws ¥ W 5
" Thus far, all thE examples in this book have used
remainder of this chapter explains how to use Thread and Runnable to create and

manage threads, beginning with the one thread that all Java programs have: the

main thread.
e el o S8 R .:ma;\u—nw.--‘a“ e

[—
i T A

—| The Main Threa
When a Java program starts up, one thread begins

usually called the main thread of your program, bec ;
when your program begins. The main thread is important for

W Itis the thread from which other “child” threads will be sperwned.
e last thread to finish execution because it perfo

running immediately. This is
ause it is the one that is executed
two reasons:

rms various

shutdown actions.

[B Often it must be th
'

Scanned with CamScanner

s created automatically when your program is started, it
do so, you must obtain a reference to it

Although the main thread i
a public static member of Thread. Its

can be controlled through a Thread object. To
by calling the method currentThread(), which is

general form is shown here:

static Thread currentThread()

rence to the thread in which it is called. Once you have a
d, you can control it just like any other thread.

the following example:

This method returns a refe
reference to the main threa
Let’s begin by reviewing

// Controlling the main Thread.

class Current ThreadDemo {
.public static void main(string args(])

Thread t = Thread.currentThread(};

{

1y (" Current thread: " + t)i

.SystemJout.print

// change the name of the thread

t .setName ("My Thread") ;

System.out.println("After name change: " + £ 3

tay 1§
for(int n = 5; n > 0;

System.out.println(n);
Thread.sleep(1000);

}
} catch (InterruptedException e) {

System.out.println("Main thread interrupted"):

n--) {

a reference to the current thread (the main thread, in this case) is
tThread(), and this reference is stored in the local variable t.
formation about the thread. The program then calls

| name of the thread. Information about the thread is
five, pausing one second between

) method. The argument to sleep()

In this program,
obtained by calling curren
Next, the program displays in
setName() to change the interna
then redisplayed. Next, a Joop counts down from

each line. The pause is accomplished by the sleep(
-specifies the delay period in milliseconds. Notice the try/catch block around this loop-

The sleep() method in Thread might throw an InterruptedException. This would

happen if some other thread wanted to interrupt this sleeping one. This example just

Scanned with CamScanner

Chapt‘” 11: Multithreaded Programming

rints a message if it gets interrupte

_ d.Inare
this differently. Here is the output

al program, you would need to handle
generate

d by this program:
Current thread: Thyre

admain, 5, main)
After name change:

Thread(My Threaq,s,main]

R W WU

Notice the output produced when

tis used as g
in order: the name of the thre

nargument to printin(). This displays,
ad, its priority,

and the name of its group. By default, the
name of the main thread is main. Its priority is 5, which is the default value, and main

is also the name of the group of threads to which this thread belongs. A thread group is |
a data structure that controls the state of a collection of threads as a whole. This process
is managed by the particular run-time environment and is not discussed in detail here.

After the name of the thread is ¢ » tis again output. This time, the new name of
the thread is displayed.

Let’s look more closely at the methods defined by Thread
program. The sleep() method causes the threa d from which it is called to suspend
_execution for the spec_i'f_iéhdl period of milliseconds, Its general form is shown here:

! static void sleep(long mill x_’secouds)_t_hfgy_?s__Lntétpﬁﬁggd}égéep_tion

The number of milliseconds to suspend is specified in milliseconds, This method may
Ow an Interrupted Exception.

hanged

that are used in the

The sleep() method has a second form, shown next, which allows you to specify .
€ period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedExcepﬁon

This second form is useful only in environments that allow timing periods as short
as nanoseconds.

As the preceding program shows, you can set the name of 3 thread b using
setName(). You can obtain the name of a thread by calling getName() (byt note
at this procedure is not shown in the program). These methods are memberg
of the Thread class and are declared like this:

s gy .

rfﬁna‘l-vmd setNarﬁe(StrinJg lthreadNa me)7
(‘Tmal String getName() | J_ .

Here, threadNange Specifies the name of the thread.

Scanned with CamScanner

Jaya™ 2: The Compiet® =

——————— A ’1‘_h rea d

- iati biect of type Thread,
l creat ng ou create @ thread by instantiating an 0oJ€ typ

ished:
In the m-osl gtcﬂ‘i hich this can be accomplish
Java defines tW¢

@ You can implement

~ m (ﬁan oxtend the
\

The following tW

ral sense;
ways in W

the Runnable interface.

Thread class, itself.

o sections Jook at each method, in turn.

' nable |
1p|ementlng R'un that implements the Runnable

i ate a class
ost way to create a thread is to crea
;["nl;grc;ie Runr):able abstracts a unit of executable code. You can construct a thread on
any object that implements Runnable. To implement Runnable, a class need only

jmplement a single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is
important to understand that run() can call other methods, use other classes, and
declare variables, just like the main thread can. The only difference is that run()

* establishes the entry point for another, concurrent thread of execution within your
program. This thread will end when run() returns.
After you create a class that implements Runnable, you will instantiate an object of
type Thread from within that class. Thread defines several constructors. The one that
we will use is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable

interface. This defines where execution of the thread will begi
thread is specified by threadNanme, ill begin. The name of the new

After the new thread is created, it will not start running until you call its start()

method, which is declared within Thread. In ess
The start() method is shown here: ence, start() executes a call to run().

void start()

Here is an example that creates a new thread and starts it running;:

Scanned with CamScanner

Chapter 11: Multithreaded Programmine

create a second thread.
iass NEWThread implement g Runnable :
thread ti

ewThread{) {

)/ Create a new, second threag

£, = NEW Thread(thls, "Demo Threag" 5
gystem.out. prlntln("Chlld thready™ "¢l
r.start(); // Start the threag ;

&

S
-
5
c
=
o
m

y7This is the entry point for the second thread
public void run() {
try f
for(int 4 = 5; i 5 0 i-=) ¢
System.out.println("Child Thread:

L oL i);
Thread.sleep(500); |
} ' i
} catch (InterruptedException e) { |
System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");
= 3
)
class ThreadDemo ({
publlc static void main(String args(]) {
new NewThread(); // create a new thread
ry. { .
for (int i=65; 1> 0; 1*T) { ¢ "
System.out. prlntln("Maln Thread: + 1) s,
_Thread.sleep(lOOOJ:
. tedException e) {
J HEEQH (Efeerwnp Main thread interrupted."); g
System.out. println("Ma

Hoe o s _
-rSYstem.out.println(
) POP

uMéin thread exiting.");

Scanned with CamScanner

Jaya™ 2: The Complete Reference

Choosing an Approach

B B3 P AR R PR ARG AR S T AT S SRS E R SR TR T E T IS ERA AF

i see, the
‘Ccding yversion. As you C;"ln. Lt

as the Pl"f_ s e e
dr which 15 derived

bject of NewThrea
s the following form of

This program generates the same O%ltpllt
child thread is created by instantiating an o
from Thread.

Notice the call to super() insid
the Thread constructor:

e NewThread. This invoke

public Thread(String threadNanie)

Here, threadName specifies the name of the thread.

At this point, you might be wondering why Java has two ways to crt;a :ﬁ ;fsl;li éhl‘s;?t&
and which approach is better. The answers to these questions turn o gl li .
The Thread class defines several methods that can be overridden by_ a : erived class.
Of these methods, the only one that must be overridden is run(). This is, of course, the
same method required when you implement Runnable. Many Java programmers feel
that classes should be extended only when they are being enhanced or mod{ﬁ?d in
some way. So, if you will not be overriding any of Thread’s other methods, it is !
probably best simply to implement Runnable. This is up to you, of course. However,
throughout the rest of this chapter, we will create threads by using classes that
implement Runnable.

e

Creating Multiple Threads

So far, you have been using only two threads: the main thread and one child thread.

However, your program can spawn as many threads as it needs. For example, the
following program creates three child threads:

// Create multiple threads.

class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread (String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread; =
t.start(); // Start the threaq

}

+ L)

// This is the entry point for

public void run() ({ threaq,

Scanned with CamScanner

}

The

New
New
Ney

One:
Two:

ery { ‘ : |
for(int 1 = By 4 & Oy $==) {
gystem.out.println(name + ": " + i)
Thread.sleep(1000) ;
}
} catch (InterruptedException e) ({ .
gystem.out.println(name + "Interrupted")

.
[}

)

System.cut.println{name + " exiting.");

class MultiThreadDemo {

public static void main(String args([])

new NewThread("One");
new NewThread ("Two") ;
new NewThread ("Three");

// start threads

gy

/4 wait for other threads to end
Thread.sleep(10000) ;

}t catch (InterruptedException e)

P
F|
L

System.out.println(“Main thread Interrupted");

W

System.out.println("Main thread exiting.");

output frdm this program is shown here:

thread: Thread[One,5,main]
thread: Thread[Two,5,main]

thread: Thread[Three,5,main]
5

5

Three; 5_.

One

Two:

i b S g : oy
4

Three: 4

One s

3

Three: 3

TWD :

3

Scanned with CamS

A

canner

one s
"I"E-{ ot

e B]
1t WO :

One: 1
Three: 1
Two: 1
One exiting.
Two exiting.
Three exiting.
Main thread exiting.
CPU. Notice the call to

: oads share the
As you can see, once started, all three child threads shar ' seconds and

' n . - Jeep for te
sleep(10000) in main(). This causes the main thread to sleep f
ensures that it will finish last.

et Ay -

o |sA||ve() e jOII‘I() s

As mentioned, often you will want the main thread to finish last. In the preceding
examples, this is accomplished by calling sleep() within main(), with a long enough
delay to ensure that all child threads terminate prior to the main thread. However,
this is hardly a satisfactory solution, and it also raises a larger question: How can one
thread know when another thread has ended? Fortunately, Thread provides a means
by which you can answer this question.

T'wo ways exist to determine whether a thread has finished. First, yvou can call
isAlive() on the thread. This method is defined by Thread, and its general form 1s

shown here: I e

final boolean isAlive() /

e

The isAlive() method returns true if the th
It returns false otherwise,)

While isAlive() is occasionally useful, the me
use to wait for a thread to finish is called join(), shown here:

read upon which it is called is still running.

thod that you will more commonly

-

Einal void join() throws I;n-tzﬁ'ﬁﬁted Exception

_This method waits until the thread on which it is called terminates, Its name comes
from the concept of the ca ling thread waiting until the specified thread joins it.
Additional forms of join() allow you to specify a maximum amount of time that

you want to wait for the specified thread to terminate.
Here is an improved version of the preceding example that uses join() to ensure
that the main thread is the last to stop. It also demonstrates the isAlive() method.

Scanned with CamScanner

c"‘lllar 1.

: | 52 ""Iti“‘fuded Programming 237

// Using join() tq wait

class NewThreaqd impleme . 5 kg
string name; // Name o nlnable { Nish,
Thread t;

NewThread(String thy
name = threadname;
t = new Thread(this
System. out -Printip (;
t.start();

eadr}ame)

public void run () { thread.
try
for(int i =

—5;i>0:i--}{
System.out.println(
Thread.sleep(lOOO);

}
} catch {InterruptedException e) {

System.out.println(name + " interrupted.")
}

name + "e o om + i:l;

r

System.out.println(name + " exiting."):

}

class DemoJoin {

Public static void main(String args[]) ({
NewThread obl = new NewThread("One");
NewThread ob2 = new NewThread("Two");
NewThread ob3 new NewThread ("Three");

1l

i live: ™
System.out .println("Thread One 1s aliv

+ obl.t.isAlivel));

Two is alive:
' tln{-Thread ;

SYStem.out.prln . “p2.t.isAlive ()]s

nThread Three is alive: "
+ ob3.t.isAlive());

1]

System.out .println(

TE inish
/! wait for threads tO fini
tl"y{ (
System.out .println
obl.t.join():

wwaiting for threads to finish.");

Scanned with CamScanner

ob2.t.join{);
ob3.t.join();

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted") ;

System.out.println("Thread One is alive: "
+ obl.t.isAlive()):

System.out.println("Thread Two is alive: "
+ ob2.t.isAlivel());

System.out.println("Thread Three is alive: "
+ ob3.t.isAlivel());

System.out.println("Main thread exiting.");

Sample output from this program is shown here:

New thread: Thread[One, 5,main]
New thread: Thread[Two,5,main]

New thread: Thread[Three,S,main]

Thread One is alive: true

Thread Two is alive: true

Thread Three is alive: true

Waiting for threads to finish.

One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Two: 3

Three: 3

One: 2

Two: 2

Three: 2

One: 1 ' 4-13::
Two: 1 ' 15}
Three: 1

Scanned with CamScanner

r— T A A A 4

Chapter 11: Multithreaded Programmingf;;

Two exiting.

Three exiting.

One exiting.

Thread One is alive:

false
Thread Two is alive: false
Thread Three is alive: false

Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Scanned with CamScanner

